Indefinitely Oscillating Martingales

نویسندگان

  • Jan Leike
  • Marcus Hutter
چکیده

We construct a class of nonnegative martingale processes that oscillate indefinitely with high probability. For these processes, we state a uniform rate of the number of oscillations for a given magnitude and show that this rate is asymptotically close to the theoretical upper bound. These bounds on probability and expectation of the number of upcrossings are compared to classical bounds from the martingale literature. We discuss two applications. First, our results imply that the limit of the minimum description length operator may not exist. Second, we give bounds on how often one can change one’s belief in a given hypothesis when observing a stream of data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustaining supercooled mixed phase via resonant oscillations of the order parameter

We investigate the dynamics of a first order transition when the order parameter field undergoes resonant oscillations, driven by a periodically varying parameter of the free energy. This parameter could be a background oscillating field as in models of pre-heating after inflation. In the context of condensed matter systems, it could be temperature T , or pressure, external electric/magnetic fi...

متن کامل

Connecting Yule Process, Bisection and Binary Search Tree via Martingales

We present new links between some remarkable martingales found in the study of the Binary Search Tree or of the bisection problem, looking at them on the probability space of a continuous time binary branching process.

متن کامل

Probability Theory II

Contents Chapter 1. Martingales, continued 1 1.1. Martingales indexed by partially ordered sets 1 1.2. Notions of convergence for martingales 3 1.3. Uniform integrability 4 1.4. Convergence of martingales with directed index sets 6 1.5. Application: The 0-1 law of Kolmogorov 8 1.6. Continuous-time martingales 9 1.7. Tail bounds for martingales 12 1.8. Application: The Pólya urn 13 1.9. Applicat...

متن کامل

Convergence Theorems for Set Valued and Fuzzy Valued Martingales and Smartingales

The purpose of this paper is to give convergence theorems both for closed convex set valued and relative fuzzy valued martingales, and suband supermartingales. These kinds of martingales, suband super-martingales are the extension of classical real valued martingales, suband super-martingales. Here we compare two kinds of convergences, in the Hausdor metric and in the Kuratowski-Mosco sense. We...

متن کامل

On the history of martingales in the study of randomness

Martingales played an important role in the study of randomness in the twentieth century. Jean Ville invented martingales in the 1930s in order to improve Richard von Mises’ concept of a collective, and Claus-Peter Schnorr made martingales algorithmic in the 1970s in order to advance the study of algorithmic randomness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014